skip to main content


Search for: All records

Creators/Authors contains: "Sainju, Arpan Man"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flood inundation mapping from Earth imagery plays a vital role in rapid disaster response and national water forecasting. However, the problem is non-trivial due to significant imagery noise and obstacles, complex spatial dependency on 3D terrains, spatial non-stationarity, and high computational cost. Existing machine learning approaches are mostly terrain-unaware and are prone to produce spurious results due to imagery noise and obstacles, requiring significant efforts in post-processing. Recently, several terrain- aware methods were proposed that incorporate complex spatial dependency (e.g., water flow directions on 3D terrains) but they assume that the inferred flood surface level is spatially stationary, making them insufficient for a large heterogeneous geographic area. To address these limitations, this paper proposes a novel spatial learning framework called hidden Markov forest, which decomposes a large heterogeneous area into local stationary zones, represents spatial dependency on 3D terrains via zonal trees (forest), and jointly infers the class map in different zonal trees with spatial regularization. We design efficient inference algorithms based on dynamic programming and multi-resolution filtering. Evaluations on real-world datasets show that our method outperforms baselines and our proposed computational refinement significantly reduces the time cost. 
    more » « less
  2. Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited. 
    more » « less
  3. In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy. 
    more » « less
  4. null (Ed.)
    Spatial classification with limited observations is important in geographical applications where only a subset of sensors are deployed at certain spots or partial responses are collected in field surveys. For example, in observation-based flood inundation mapping, there is a need to map the full flood extent on geographic terrains based on earth imagery that partially covers a region. Existing research mostly focuses on addressing incomplete or missing data through data cleaning and imputation or modeling missing values as hidden variables in the EM algorithm. These methods, however, assume that missing feature observations are rare and thus are ineffective in problems whereby the vast majority of feature observations are missing. To address this issue, we recently proposed a new approach that incorporates physics-aware structural constraint into the model representation. We design efficient learning and inference algorithms. This paper extends our recent approach by allowing feature values of samples in each class to follow a multi-modal distribution. Evaluations on real-world flood mapping applications show that our approach significantly outperforms baseline methods in classification accuracy, and the multi-modal extension is more robust than our early single-modal version. Computational experiments show that the proposed solution is computationally efficient on large datasets. 
    more » « less
  5. null (Ed.)
  6. Spatial classification with limited feature observations has been a challenging problem in machine learning. The problem exists in applications where only a subset of sensors are deployed at certain regions or partial responses are collected in field surveys. Existing research mostly focuses on addressing incomplete or missing data, e.g., data cleaning and imputation, classification models that allow for missing feature values, or modeling missing features as hidden variables and applying the EM algorithm. These methods, however, assume that incomplete feature observations only happen on a small subset of samples, and thus cannot solve problems where the vast majority of samples have missing feature observations. To address this issue, we propose a new approach that incorporates physics-aware structural constraints into the model representation. Our approach assumes that a spatial contextual feature is observed for all sample locations and establishes spatial structural constraint from the spatial contextual feature map. We design efficient algorithms for model parameter learning and class inference. Evaluations on real-world hydrological applications show that our approach significantly outperforms several baseline methods in classification accuracy, and the proposed solution is computationally efficient on a large data volume. 
    more » « less